Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft.
نویسندگان
چکیده
STUDY DESIGN This was a biomechanical push-out testing study using a porcine model. OBJECTIVE The purpose was to evaluate the strength of implant-bone interface of a porous titanium scaffold by comparing it to polyetheretherketone (PEEK) and allograft. SUMMARY OF BACKGROUND DATA Osseointegration is important for achieving maximal stability of spinal fusion implants and it is desirable to achieve as quickly as possible. Common PEEK interbody fusion implants appear to have limited osseointegration potential because of the formation of fibrous tissue along the implant-bone interface. Porous, three-dimensional titanium materials may be an option to enhance osseointegration. METHODS Using the skulls of two swine, in the region of the os frontale, 16 identical holes (4 mm diameter) were drilled to 10 mm depth in each skull. Porous titanium, PEEK, and allograft pins were press fit into the holes. After 5 weeks, animals were euthanized and the skull sections with the implants were cut into sections with each pin centered within a section. Push-out testing was performed using an MTS machine with a push rate of 6 mm/min. Load-deformation curves were used to compute the extrinsic material properties of the bone samples. Maximum force (N) and shear strength (MPa) were extracted from the output to record the bonding strength between the implant and surrounding bone. When calculating shear strength, maximum force was normalized by the actual implant surface area in contact with surrounding bone. RESULTS Mean push-out shear strength was significantly greater in the porous titanium scaffold group than in the PEEK or allograft groups (10.2 vs. 1.5 vs. 3.1 MPa, respectively; P < 0.05). CONCLUSION The push-out strength was significantly greater for the implants with porous titanium coating compared with the PEEK or allograft. These results suggest that the material has promise for facilitating osseointegration for implants, including interbody devices for spinal fusion. LEVEL OF EVIDENCE N/A.
منابع مشابه
In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application
Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on...
متن کاملCharacterization of a Novel Porous Titanium Scaffold for Orthopedic Applications
INTRODUCTION: Highly porous metals, such as porous titanium and tantalum, have been developed for use in orthopedics. Ideal porous materials should have a porosity greater than 60% with interconnected pores of 100-500 μm for osseointegration and match the mechanical properties of bone [1]. With improved osseointegration and similar properties to bone, instances of implant stress shielding and f...
متن کاملOsseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo
Polyetheretherketone (PEEK) exhibits appropriate biomechanical strength as well as good biocompatibility and stable chemical properties but lacks bioactivity and cannot achieve highly efficient osseointegration after implantation. Incorporating bioceramics into the PEEK matrix is a feasible approach for improving its bioactivity. In this study, nanohydroxyapatite (n-HA) and nano-calcium silicat...
متن کاملTitanium coated cage enhances fusion rates in posterior lumbar interbody fusion
Titanium coated PEEK cages incorporate the advantages of both PEEK, which offers a native-like elastic modulus and a radiolucent behaviour, and Titanium which provides improved biocompatibility and promotes osseointegration. In this study, we evaluated the response of Titanium plasma sprayed PEEK cages to provide safe support of the lumbar spine and promote bony fusion.
متن کاملTailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface.
3D printed porous titanium (Ti) holds enormous potential for load-bearing orthopedic applications. Although the 3D printing technique has good control over the macro-sturctures of porous Ti, the surface properties that affect tissue response are beyond its control, adding the need for tailored surface treatment to improve its osseointegration capacity. Here, the one step microarc oxidation (MAO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Spine
دوره 41 19 شماره
صفحات -
تاریخ انتشار 2016